8.8 - Applications of Trig Functions

1. The geese population in a certain area fluctuates periodically between a maximum of 600 geese and a minimum of 350 geese. This population cycle repeats every 5 years. Write a sine function to the model the geese population when time is measured in years.

2. The average monthly temperature in Greenville varies periodically with a maximum of 69°F and a minimum of 41°F. A complete cycle repeats every year. Write a cosine function to model the temperature in Greenville when time is measured in months.

3. The function $f(x) = -33\cos(\frac{\pi}{6}x) + 40$ models the height of a rider on a Ferris wheel, where x represents time in minutes. Determine the maximum and minimum height the rider reaches, and determine the amount of time it takes for the rider to complete a full revolution.

4. A Ferris wheel has a diameter of 92 m and makes a complete revolution every 8 minutes.. The wheel starts turning when a rider is at its lowest point, 9 m above the ground. Write a cosine function to model the rider's height above the ground when time is measured in minutes.

5. The function $f(x) = 1.3cos(4\pi x) + 88.7$ models the altitude of the midday sun at Venus's equator, where x represents time in years. Determine the maximum and minimum altitude the sun reaches, and determine the amount of time it takes for the sun to complete a full cycle.

6. When an appliance is plugged into an outlet, voltage fluctuates between positive and negative values. In Barbados, the voltage fluctuates between 163 volts and -163 volts with a frequency of 50 cycles per second. Write a sine function to model the voltage when time is measured in seconds.

Heygirl, what's your sine?

Math 3 Unit 8: Trigonometry

May 7	May 8	May 9	May 10	May 11
 Angles in degrees HW: worksheet 8.1 	• Angles in radians HW: worksheet 8.2	• Right triangle trig HW: worksheet 8.3	 Unit circle Exact values of sine and cosine HW: worksheet 8.4 	 QUIZ!! Exact values of all trig functions HW: worksheet 8.5
May 14	May 15	May 16	May 17	May 18
 Graphs of sine and cosine HW: worksheet 8.6 	 Equations of sine and cosine HW: worksheet 8.7 	 QUIZ!! Applications of trig functions HW: worksheet 8.8 	 Review for test HW: finish review 	• TEST!!!

8.1 - Angles and Their Measures in Degrees

Draw each angle in standard position.

1. 120° 2. -240° 3. 550°	4 . -270°
--	---------------------------

5. 300^o

6. 40^o

7. -400°

8. – 100^o

Find one positive and one negative coterminal angle that corresponds to the given angle.

9. 55 ^o	10 . -40°	11. -1600°	12 . 415 ^o
---------------------------	---------------------------	----------------------------	------------------------------

Determine an angle between 0° and 360° that is coterminal to the given angle.

13. 665° **14.** -70° **15.** -640° **16.** 1190°

8.7 - Equations of Sine and Cosine Worksheet

1 . $y = -4\cos 4x + 7$	2 . $y = 6sin\frac{1}{3}x - 4$
Amplitude:	Amplitude:
Period:	Period:
Frequency:	Frequency:
Vertical Shift:	Vertical Shift:
3. $y = sinx + 2$	4 . $y = \frac{1}{2}cos\frac{4}{3}x$
Amplitude:	Amplitude:
Period:	Period:
Frequency:	Frequency:
Vertical Shift:	Vertical Shift:
$5. y = -2\cos 8x - 4$	6. $y = -sin3x + 1$
Amplitude:	Amplitude:
Period:	Period:
Frequency:	Frequency:
Vertical Shift:	Vertical Shift:

7. Given an amplitude of 7, a period of 4π , and a vertical shift down 3 units, write the equation of the sine function.

8. Given an amplitude of 3, a frequency of $\frac{1}{\pi}$, and a vertical shift up 7 units, write the equation of the cosine function.

9. Given an amplitude of 7456, a period of $\frac{\pi}{46}$, and a vertical shift up 81903 units, write the equation of the sine function.

8.6 - Graphs of Sine and Cosine

Determine the amplitude, period, frequency, vertical shift, and equation for each graph below.

А

В

С

D

	Amplitude	Period	Frequency	Vertical Shift	Equation
A					
В					
С					
D					

8.2 - Angles and Their Measures in Radians

Convert angle in de	egrees to radians.		
1 . 18 ^o	2 . 150 ^o	3 . 330 ^o	4. - 270 ^o
Convert each angle	e in radians to degrees.		
5. $\frac{\pi}{9}$	6. $\frac{3\pi}{4}$	7. $\frac{11\pi}{6}$	8. $-\frac{25\pi}{18}$

Draw each angle in standard position.

0 T J 0	9.	$\frac{5\pi}{6}$	10. $-\frac{\pi}{4}$	11. $\frac{10\pi}{3}$	12. $-\frac{7\pi}{6}$
---------	----	------------------	----------------------	-----------------------	-----------------------

13. π	14. $-\frac{2\pi}{3}$	15. $-\frac{7\pi}{3}$	16. $\frac{11\pi}{6}$
-------	-----------------------	-----------------------	-----------------------

8.3 - Right Triangle Trig

Solve for the variable.

1.	2.	3.
4.	5.	6.

7. The flagpole casts a shadow 40 feet long when the measurement of the angle of elevation to the sun is 31°. How tall is the flagpole?

8. A submarine dives at an angle of depression of 15°. It travels a horizontal distance of 1500 feet during the dive. What is the depth of the submarine after the dive?

9. Sally is standing a distance away from a skyscraper that is 780 feet tall. Marcie is between Sally and the skyscraper. The angle of elevation from Sally's position to the top of the skyscraper is 42°. The angle of elevation from Marcie's position to the top of the skyscraper is 71°. How far is Sally from Marcie?

Use the unit circle to determine the exact value of each trigonometric function.

1. <i>sin</i> 225 [°] =	2. $cos150^{\circ}$ =
3. $tan60^{\circ} =$	4. $sin\frac{\pi}{6}$ =
5. $sec\frac{2\pi}{3} =$	6. $cot\frac{5\pi}{3}$ =
7. $tan90^{o} =$	8. <i>cosπ</i> =
9. $CSC\frac{3\pi}{4} =$	10. <i>sin</i> 2π =
11. $cos - 30^o =$	12. <i>sec</i> 585° =
13. $cot180^{o} =$	14. $sin\frac{\pi}{2}$ =
15. $cos 270^{o} =$	16. $sec \frac{7\pi}{6} =$

8.5 - Exact Values of Trig Functions

Complete the unit circle

....said no teacher ever.

Turn the page to get to homework 8.4

(Like I would really give you a day without homework. Puh-lease)

8.4 - Exact Values of Sine and Cosine worksheet

Complete the unit circle.

Use the unit circle to determine the exact value of each trigonometric function.

1. $sin 45^{\circ} =$	2. <i>cos</i> 0 =
3. $sin - 210^{\circ} =$	4. $\cos \frac{3\pi}{4} =$
5. $sin \frac{4\pi}{3} =$	6. <i>cos</i> 240 ^{<i>o</i>} =
7. $sin \frac{8\pi}{3} =$	8. $cos - 90^o =$
9. $sin - 855^o =$	10. <i>cos</i> 570 [°] =
11. <i>sin</i> 270° =	12. $\cos - \frac{\pi}{3} =$
13. $sin - 3\pi =$	14. $\cos \frac{11\pi}{6} =$