NAME _____

Polynomial Division

Divide using either long division or synthetic division (when possible).

1. $(9x^3 - 2x^2 + 5x + 4) \div (x - 3)$ 2. $(6x^3 + 19x^2 + 7x - 12) \div (2x + 3)$.

3.
$$(12x^3 - 7x^2 - 38x + 35) \div (4x - 5)$$

4. $(x^4 + 7x^3 - 6x + 2) \div (x + 4)$

Remainder/Factor Theorem

Determine which are factors of $2x^{91} - x^{90} - 10x^{89}$.

5. 3x + 1 6. 2x - 5 7. x + 2

Polynomial Vocabulary

Classify each polynomial by the degree and by the number of terms.

8. $7x^3 - 2x$ 9. $-10x^4 - 3x^3 + 2$ 10. 7

Zeroes and Multiplicity, Extrema, Intervals for Increasing/Decreasing/Positive/Negative

For each graph and equation, determine all key features.

13. $y = -2(x+1)^2(3x-1)$

14. $y = x^3(x-2)(x-3)$

Zeroes:	Zeroes:
	Extrema:
Pos/Neg:	Pos/Neg:
Inc/Dec:	Inc/Dec:
End Behavior:	End Behavior:
Degree:	Degree:

Solve Polynomials

Determine all real and complex solutions.

15.
$$x^3 - 5x^2 + 3x - 15 = 0$$

16. $x^4 - 3x^3 - 24x^2 + 80x = 0$

17. $x^3 + 64 = 0$

18. $x^3 + 5x^2 + 10x + 24 = 0$

Applications

19. The weight of an ideal round-cut diamond can be modeled by $w = 0.0074d^3 - 0.087d^2 + 0.32d$, where w is the diamond's weight (in carats) and d is its diameter (in millimeters). According to the model, what is the weight of a diamond with a diameter of 12 millimeters?

20. The profit *P* (in millions of dollars) for a t-shirt manufacturer can be modeled by $P = -x^3 + 5x^2 + 9x$, where *x* is the number of t-shirts produced (in millions). Currently, the company produces 5 million t-shirts and makes a profit of \$45,000,000. What lesser number of t-shirts could the company produce and still make the same profit?

21. A box has a height of x - 4 inches and a length of x + 3 inches. If the volume of the box is $2x^3 - 3x^2 - 23x + 12$ cubic inches, determine the width of the box.

22. When fighter pilots train for dog-fighting, a "hard-deck" is usually established below which no competitive activity can take place. The polynomial graph given shows Maverick's altitude (y in 100s of feet) above and below this hard-deck during a 5 second (x) interval.

a. What is the lowest possible degree of this polynomial?

b. How many total seconds was Maverick above the hard-deck during the first 5 seconds?

c. After how many seconds is Maverick 300 feet above the hard-deck?

d. Determine the equation of the function in factored form.

Rates of Change

- 23. Find the average rate of change from x = -1 to x = 3 for each of the functions below.
 - a. a(x) = 2x + 3b. $b(x) = x^2 - 2$ c. $c(x) = 2^x - 1$

- d. Which function has the greatest average rate of change over the interval [-1, 3]?
- 24. In general as $x \to \infty$, which function eventually grows at the fastest rate?

a.
$$a(x) = 3x$$

b. $b(x) = x^3$
c. $c(x) = 3^x$