Polynomial Division

Divide using either long division or synthetic division (when possible).

1. $\left(9 x^{3}-2 x^{2}+5 x+4\right) \div(x-3)$
2. $\left(6 x^{3}+19 x^{2}+7 x-12\right) \div(2 x+3)$.
3. $\left(12 x^{3}-7 x^{2}-38 x+35\right) \div(4 x-5)$
4. $\left(x^{4}+7 x^{3}-6 x+2\right) \div(x+4)$

Remainder/Factor Theorem

Determine which are factors of $2 x^{91}-x^{90}-10 x^{89}$.
5. $3 x+1$
6. $2 x-5$
7. $x+2$

Polynomial Vocabulary

Classify each polynomial by the degree and by the number of terms.
8. $7 x^{3}-2 x$
9. $-10 x^{4}-3 x^{3}+2$
10. 7

Zeroes and Multiplicity, Extrema, Intervals for Increasing/Decreasing/Positive/Negative

For each graph and equation, determine all key features.

Zeroes: \qquad
Extrema: \qquad
Pos/Neg: \qquad
Inc/Dec: \qquad
End Behavior: \qquad
Degree: \qquad
13. $y=-2(x+1)^{2}(3 x-1)$

Zeroes: \qquad
Extrema: \qquad
Pos/Neg: \qquad
Inc/Dec: \qquad
End Behavior: \qquad
Degree: \qquad
12.

Zeroes: \qquad
Extrema: \qquad
Pos/Neg: \qquad
Inc/Dec: \qquad
End Behavior: \qquad
Degree: \qquad
14. $y=x^{3}(x-2)(x-3)$

Zeroes: \qquad
Extrema: \qquad
Pos/Neg: \qquad
Inc/Dec: \qquad
End Behavior: \qquad
Degree: \qquad
15. $x^{3}-5 x^{2}+3 x-15=0$
16. $x^{4}-3 x^{3}-24 x^{2}+80 x=0$
17. $x^{3}+64=0$
18. $x^{3}+5 x^{2}+10 x+24=0$

Applications

19. The weight of an ideal round-cut diamond can be modeled by $w=0.0074 d^{3}-0.087 d^{2}+0.32 d$, where w is the diamond's weight (in carats) and d is its diameter (in millimeters). According to the model, what is the weight of a diamond with a diameter of 12 millimeters?
20. The profit P (in millions of dollars) for a t-shirt manufacturer can be modeled by $P=-x^{3}+5 x^{2}+9 x$, where x is the number of t -shirts produced (in millions). Currently, the company produces 5 million t -shirts and makes a profit of $\$ 45,000,000$. What lesser number of t-shirts could the company produce and still make the same profit?
21. A box has a height of $x-4$ inches and a length of $x+3$ inches. If the volume of the box is $2 x^{3}-3 x^{2}-23 x+12$ cubic inches, determine the width of the box.
22. When fighter pilots train for dog-fighting, a "hard-deck" is usually established below which no competitive activity can take place. The polynomial graph given shows Maverick's altitude (y in 100s of feet) above and below this hard-deck during a 5 second (x) interval.
a. What is the lowest possible degree of this polynomial?
b. How many total seconds was Maverick above the hard-deck during the first 5 seconds?
c. After how many seconds is Maverick 300 feet above the hard-deck?
d. Determine the equation of the function in factored form.

Rates of Change

23. Find the average rate of change from $x=-1$ to $\boldsymbol{x}=\mathbf{3}$ for each of the functions below.
a. $a(x)=2 x+3$
b. $b(x)=x^{2}-2$
c. $c(x)=2^{x}-1$
d. Which function has the greatest average rate of change over the interval [$\mathbf{- 1 , 3] \text { ? }}$
24. In general as $x \rightarrow \infty$, which function eventually grows at the fastest rate?
a. $a(x)=3 x$
b. $b(x)=x^{3}$
c. $c(x)=3^{x}$
