## Unit 2 Review - Exponential \& Logarithmic Functions

## Converting Between Logarithmic and Exponential Forms

## Rewrite in Logarithmic Form

Rewrite in Exponential Form

1. 2. $6^{3}=216$
1. $\ln 7=1.946$
2. $0.04=5^{-2}$
3. $\log _{3} 9=2$

## Evaluating Logarithms

5. $\log _{2} 8$
6. $\log 56$
7. $\ln 12$

Expanding the Logarithmic Expressions
8. $\log \frac{w^{5} x}{y z^{9}}$
9. $\log _{8} 4 a b^{2}$
10. $\log _{2}(c d)^{3}$

Condense the Logarithmic Expressions
11. $\log _{5} 2+\frac{1}{3} \log _{5} k-3 \log _{5} m$
12. $\frac{1}{2} \log _{9} 2-\log _{9} x-3 \log _{9} 3+\log _{9} y$

Solving Logarithmic Equations
8. $\log _{3}(2 x+7)=4$
10. $\log _{x} 16=2$
12. $\log _{8}(6 x-4)=\log _{8}(2 x+12)$

Solving Exponential Equations
15. $e^{3 x}=11$
16. $3^{2 x}-6=17$
9. $\ln (2 x-8)=3$
11. $\log _{4} 3 x^{2}+\log _{4} 2 x=4$
13. $\log x-\log (x-21)=2$
20. $y=3^{x}-1$

Asymptote:
Domain: $\qquad$
Range:
Transformation(s): $\qquad$

21. $y=(2)^{x-2}+2$

Asymptote: $\qquad$
Domain: $\qquad$
Range: $\qquad$
Transformation(s): $\qquad$

22. $y=\log _{4}(x+1)$

Asymptote: $\qquad$
Domain: $\qquad$
Range: $\qquad$
Transformation(s): ___


## Mixed Applications Practice (Growth, Decay and Compound Interest)

23. How much money will be available in 7 years if $\$ 400$ is invested at $3 \%$ interest compounded continuously?
24. The value of an iPod purchased for $\$ 300$ decreases by $6 \%$ each year. How long until the iPod is worth $\$ 90$ ?
25. How long will it take for your bank account to triple if the money is invested at $4 \%$ interest compounded monthly?
26. If a gallon of milk costs $\$ 3$ now and the price is increasing by $10 \%$ each year, how long before milk costs $\$ 10$ per gallon?
27. How much money must be invested at $6.5 \%$ interest compounded quarterly for $\$ 50,000$ to be available in 7 years?
28. The number of bacteria present in a colony is 180 at $11 \mathrm{a} . \mathrm{m}$. and the number of bacteria doubles every hour. How many will be present at 8 p.m.?
29. How long will it take to have $\$ 1400$ if $\$ 900$ is invested at $7 \%$ interest compounded continuously?
