Simplifying Radicals

Simplify each radical. (This DOES NOT mean write it as a decimal!)

1. $\sqrt{48}$
2. $\sqrt{-540}$
3. $\sqrt{-27}$

Quadratic Formula

Solve each equation using the quadratic formula.
4. $k^{2}-7 k+12=0$
5. $10 x^{2}-9=9 x$
6. $3 z^{2}+2 z+3=4$
7. $5 x^{2}+3 x-1=0$
8. $b^{2}-10 b=20$
9. $3 x^{2}=6-2 x$
10. $2 x^{2}+4 x=-3$
11. $2 h^{2}-7 h=-7$
12. $4 g^{2}+3=6 g$
13. $x^{2}+2 x+2=0$

Vertex Formula

Determine the vertex of each quadratic function.
14. $y=x^{2}-6 x+4$
15. $y=2 x^{2}-8 x+3$
16. $y=-3 x^{2}+24 x-2$

Applications of Quadratics

17. Cole kicked a football. The equation $h=-16 t^{2}+60 t+25$ describes the height of the ball t seconds after it was kicked. How long did it take the football to hit the ground?
18. The height of an arrow that has been shot skyward is modeled by $h=-2 t^{2}+20 t-2$, where t is the number of seconds after the arrow was shot. What is the highest height that the arrow reaches?
19. The cost of a pizza with "the works" is given as a function of its diameter. The relationship is $C=d^{2}-2 d+447$, where C is the cost in cents, and d is the diameter of the pizza in centimeters. If the pizza costs $\$ 16.00$, then what is the diameter of the pizza?
20. A watermelon is launched in the air at a picnic. The height of the watermelon t seconds after it is launched is modeled by $h=-4 t^{2}+50 t-9$. When does the watermelon reach its maximum height?
