\qquad

Rotations Practice

Graph the image. List the coordinates of the image. Then write the rule in proper notation.

1) Rotate $\triangle \mathrm{JOH}-90^{\circ}$ about the origin.

Rule: \qquad

3) Rotate $\triangle \mathrm{JOH} 180^{\circ} \mathrm{CW}$ about the origin.

Rule: \qquad

2) Rotate $\triangle \mathrm{JOH} 180^{\circ} \mathrm{CCW}$ about the origin.

Rule: \qquad

4) What do you notice about \#2 and \#3?
\qquad
\qquad
\qquad
\qquad
\qquad

Describe the rotations below using one clockwise rotation and one counter-clockwise rotation.
5)

This rotation could be described
as \qquad ${ }^{\circ} \mathrm{CW}$, or \qquad ${ }^{\circ}$ CCW
6)

This rotation could be described
as \qquad ${ }^{\circ} \mathrm{CW}$, or \qquad ${ }^{\circ} \mathrm{CCW}$
7) Say instead of rotating about the origin, you want to see what would happen if you rotated about another point -- say, the point $(1,3)$. What would that look like?

Rotate the triangle below $90^{\circ} \mathrm{CW}$ about the point $(1,3)$.

8) Say instead of rotating on a coordinate plane, you decide to rotate within a different shape.
a) How many degrees would each rotation be within the pentagon MATRI below? Why?
b) Find the image of point M rotated 216° clockwise about point X.

Graph the preimage and image. List the coordinates of the image. Then write the rule in proper notation.
9) $\Delta T R L: T(2,-1), R(4,0)$, and $L(1,3)$ -90° about the origin.

11) $\Delta R S T: R(2,-1), S(4,0)$, and $T(1,3)$ 90° counter clockwise about the origin.

10) Δ CDY: $C(-4,2), D(-1,2)$, and $Y(-1,-1)$
270° clockwise about the origin.

12) \triangle FUN: $F(-4,-1), U(-1,3)$, and $N(-1,1)$ 180° clockwise about the origin.

Rule:

